
10' J Solid' Slfll<l.res Vol 18 No 3, pp 181-191,1'lll!
Pnrucd ,. Greal Bntalft

0020-1683/82/030181-11$030010
© J'lll2 Pergamon Pre" Ltd

A PLASTIC-FRACTURE MODEL FOR CONCRETE

S. S. HSIEH, E. C. rING and W. F. CHEN

School of CJvJl Engineering, Purdue UnIversity, West Lafayette, IN 47907, U S.A

(ReceIved 20 Apnll98l; In nvised lorm 3 Augllst 1981)

Abaraet-The paper summanzes recent efforts 10 formulatmg an elastic-plastic-fracture model for the
fimte-element analysis of concrete structures. Based on the geometrical considerations, a four-parameter
fracture (or Yleldmg) cnterion was proposed which embraces some of the slJDpler existing models IsotroPIC
elastic and anisotropic elastic behaviors were proposed for the lDitiailoading and the post.failure behavIOrs
Aplastic model displaying miXed hardening was proposed to describe matena! behaViors between the mltlal
yielding and the fracture failure Incremental stress-strain relationships were denved based on the
associated ftow rule and Ziegler's kmematlc hardening rule Three different types of faIlure modes were
considered A sImple crushingcoefficient was defined based on adual critenon to identify the crushIng type, the
crackingtype and themJl[ed type offailure Matena!parametersrequired for eachelementof the plastic·fracture
model were determined. An important feature of the paper is that matrix formulations for all the constltutrve
equations were derived and are available for finite-elemenl ImplementatIOns
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NOTATION
experimentally delermmed material constants
abbreviated functions defined in eqns (24) and (25)
parameters in eqn (II) and eqn (12)
elastic stiffness tensor
tangent stiffness matrix of plastiC concrete
stiffness matrix of fractured concrete
Young's modulus
loading function
failure function
tJltimate strength of concrete under UniaXial compression, UD8X1a1 tensIOn. biaxial equal compressIOn

and triaxial compressIOn With confinement pressure I;e, respectively
Initial dlscontmuous strength of concrete under uniaxial compressIOn
confinement pressure for tnaxlal compression
shear modtJlus
work hardening modulus •
work hardenmg modulus associated with Isotropic expansIon
first stress invariant
identity matrix
second deviatroic stress invariant
bulk modulus
parameter of Isotropic hardenmg effects
maximum pnnclpal devl8toric stress
devlatonc stress tensor
coordinate transformation matrices for stress and stram components
abbreViated functIOn in eqn (18)
crushing coeffiCient
translation component for unIaXial compressive stress conditIOn
translation components of the center of Yielding surface
reduction factor
abbreviated functions meqn (18)
Kronecker delta
pnncipal strams
eqUivalent plastic stralD due to Isotropic hardenmg
equivalent plastic stram mcrement
elastiC stram IOcrement, plastIC stram mcrement, IsotrOPiC hardenmg plastic stram IDcrement. and

kinematic hardenmg plastic stram mcrement, respectively
dA positive scalar function 10 the normality condition

POIsson's ratio
Haigh-Westgarrd coordmate system
prlDclpal stresses
umaxial compremve stress
maximum pnnclpal value of u.
reduced stress-and deviatoric stress components
maximum pnnclpal stress and SWcllD
IOcremental stress and strain teDsors
IOcremental stress and strain matnces for the post-faJIure region
released stress matrices due to eraclulll and crushtlll. respectively
ISOtrOPiC strain hardenmg rate functIOn

I/J abbreViated functions In eqn (18)
'" angle that descnbes the crack plane dIrection
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INTRODUCTION
With the rapid development of computer-aided design of structures, considerable research has
been focused on the modeling of progressive failures exhibited in the concrete structures
subjected to complex loading conditions. Different approaches for the mathematical modeling,
such as material-nonlinear elasticity{l-3], rate-tndependent and rate-dependent plasticity
theories [~] have been proposed in recent years A literature review including cntiques of the
various modeling techniques was given by Chen and Ting[9].

Concrete behaviors are exceedingly complicated. A constitutive model which embraces
concrete characteristics for all types of loading and environmental conditions, and yet IS

sufficiently simple for present design applications, seems beyond reach. However, a reasonably
complete constitutive model for short-time loadings should include some of the principal
features of cracking behaviors: (i) The brittle cracking in tension, (ii) the ductile failure in
compression, and (iii) the post-failure stress-redistribution due to local cracking. Focused on
these three primary phenomena, we summarize in this paper our recent effort in formulating an
elastic-plastic-fracture model for concrete structural analysis. The present consideration IS

limited to plain concrete behaviors subjected to trl-axial short-time loading conditions.
The model assumes a linear or nonlinear elastic stress-strain relationship until the combined

state of stress reaches an initial yielding surface. The initial yielding criterion is assumed to
have the same geometrical shape in the stress space as the failure criterion. A four-parameter
failure criterion is also proposed to define the ultimate state of stress. Between the initial
yielding state and the failure state, an incremental stress and strain relationship is assumed to
define the plastic behaviors. The plastic relations are based on a mixed-hardening model and the
classical associated flow rule. Fundamental concepts and the verification of the four-parameter
failure- criterion with experimental data are discussed. For the post-failure models, the concrete
behaviors are defined by three different types of failure modes, namely, cracking, crushing, and
a mixed mode. A crushing coefficient based on a dual criterion is proposed to Identify each of
the failure modes. Procedures have also been developed to handle the stress-redistribution for
the fractured concrete. The procedures are tailored for the finite-element analysis of conerete
structures. For the fractured concrete stress-strain relationship, an anisotropic elastic model IS

proposed.
Different stages of the proposed elastic-plastic-fracture model mentioned above can be

illustrated schematically in a typical uniaxial stress-strain curve for plain concrete shown in
Fig. 1.

A FOUR·PARAMETER FAILURE CRITERION

A four-parameter failure criterIon is proposed to define the ultimate state of concrete
behavior. The same form of formulation and the same proportionalities among the matenal
parameters are also adopted to describe the initial yielding. This can be geometrically inter-
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Fig 1 An Ideahzed tYPiCal umaxlal stress-stram curve for plam concrete
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preted as the initial yielding surface in the stress space bas the same shape as the fracture
surface. ODIy the limiting values are proportionally smaller. Concrete behaviors are assumed to
be elastic for stresses within the initial yieldina surface. For stresses fallina between these two
surfaces, coacrete behaves plastically. Beyond the failure surface, an anisotropic elastic
post-fracture behavior is assumed.

CluuGeteristics of a failure surface
It is generally acceptable that the macroscopic fracture behavior can be assumed to be

isotropic. This implies that a failure function can be written in terms of the principal stresses
(0"" 0'2, 0') or in the Haiah-Westergirrd coordinate system(lO] (the stress invariant space)

where

f(P, r, (J) = 0

1
p =3lit r = V(2J~,

(J -1.Y21J.. /(Jl iUtIJ= cos 2 \12' :Svv,

5t =the maximum principal deviatoric stress

= 0'1 -j II if O't > 0'2 > 0'3,

It = the first stress invariant

=O't +0'2 +0'),

]2 = the second deviatoric stress invariant

1
=6(0"1 - O'zf +(0'2 - O')'f+(0"3 - O't'fl.

(1)

Aaeomeb'ical interpretation of the coordinate system is shown in Fia. 2. The explicit form of
the failure function is defined by the cxperimeatal data. Uniaxial and biaxial tests of plain
concrete are weD-elocumcnted in the literature. To name a few, reports by Kupfer and
Hilsdorf(11] and Tasuji et 0/.(12] nearly cover the fuD area of the biaxial stress section.

Fig. 2 Geaeral failure surface in priDapaI stress space.
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However, for the triaxial state, only the test data for limited ranges are available, and generally
have wIder scattering among different testing apparatus. Among them, we mention the results
by Mills and Zimmerman[13] Launay and Gachon[14] and Gerstle et aJ.[l5]. The aforemen­
tioned experimental data also forms the basis of the failure function proposed herein.

The available data clearly indicates that the failure surface plotted in the principal stress
space, Fig. 2, should form a cone shape With smooth curved meridians and non-circular convex
sections in the deviatoric stress plane. Since the hydrostatic pressure alone will not cause
failure, the failure cone should have an open end in the negative hydrostatic axis. In addition.
the intermediate principal stress should be accounted for. This indicates that the deviatoric
cross-section of the failure cone approaches to a circular shape as the hydrostatic pressure
increases. It proportionally shrinks into a tnangular shape as the hydrostatic pressure
decreases.

A four-parameter criterion
The present criterion IS motIvated by the geometrical requirements of the failure surface

cross-section in the deviatoric plane mentioned above. Observe in Fig. 3 that for a constant
value k, r cos 8 =k represents an equilateral triangle and r =k is a circle pn the deviatoric
plane with 181 ::s; 60°. Hence, given two positive constants a and {3 with a +{3 = I, a combined
equatIon r(a cos 8+{3) =k yields a smooth function between lel::s; 60° on the deviatoric plane
and bounded by the two extremes of equilateral triangular and circular shapes (a = 0 or (3 = 0).
Recall the convex meridians shown in the experimental data. This indicates that for a constant
value of 8, r should be a nonlinear function of p. Hence, p and r terms are added and the
resulting form is

f(p, r, 8) =ar +(a cos 8+ (3)r +Cp - I =O.

Equation (2) may be written in terms of the stress invariants defined in eqn (1):

A J2 B YJ2 CO'l D II 1- 0
(j~)2+ f~ + f~ + fc- - ,

(2)

(3)

where the parameters are nondimensionalized by using the umaxlal compressive strength of
concrete f~. In eqn (3), 0'1 is the maximum principal stress with a positive stress value
representmg a tensile stress. II is the first stress invariant, and 12 the second deviatoric stress
invariant. It is interesting to note that although the basic form is originated by the geometrical
consideration in the stress space. the resulting functional form appears to be a linear com­
bination of three well-known failure criterIa, namely, the von Mises. the Drucker-Prager. and
the Rankine's criteria.

In some aspects, eqns (2) and (3) resemble the forms proposed recently by Ottosen[16),
Hansson and Schimmelpfennig[l7], Willam and Warnke [8], and Nagamatsu and Sato[l8].

"I

rcos 9 = K

f-/I---r(ocos8+ b) =K

FIg 3 Geometry on the devlatonc plane
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This is not surprising, since all the above forms are also based on the similar set of geometncal
considerations. However, the present form appears to be simpler for the determination of
material parameters and possesses some convenience in numerical calculation. Equations (2) and
(3) also bear certain similarities to the forms suggested by Argyris et al. [19], Mills and
Zimmerman[J3] and Hannant and Frederick[20]. However, the present form has the advantage
of satisfying the convexity requirements for all type of stresses. Verifications of the present
failure criterion by plotting the function in the octahedral shear and normal stress plane, the
biaxial stress plane, and the deviatoric stress plane have shown good agreement with the
reported test data. For comparison, the material co,nstants A, B, C, D in eqn (3) were evaluated
based on four basic stress conditions: the simple tension (0'1 =1;,0'2 =0'3 =0), the simple
compression (0'17 0'2 =0, 0'3 =- I~), the biaxial compression (0'1 =0, 0'2 = 0'3 = - IbC), and the
confined triaxial compression (0'1 =0'2 =- l'"c, 0'3 =- I~c with f~c > I~c)' The stress values were
assumed to be I; =0.1 f~, fbc =1.15 f~, I~c =0.8 I~ and I~c =4.2 I~. This gives A =2.0108,
B = 0.9714, C = 9.1412, and D =0.2312. Figures 4-6 show the comparisons of the prediction
and various reported data. We have also applied the failure criterion to study an elastic-fracture
analysis of a concrete splitting test for the purpose of illustrating its tractability in numerical
calculations [21].

Criterion for initial yielding
It is convenient to assume a criterion for initial yielding to have the same functional form as

the failure criterion. In the present model, the material constants are also proposed to remain
the same, except that the nondimensional constant, the compressive strength f;, is replaced by
a different value Ic =0.3 - 0.6 f~ The exact value of fc can be taken from the uniaxial
compressive stress-strain curve of the specific concrete used.

ELASTIC AND PLASTIC REGIONS

The initial yielding criterion and the failure criterion define the limits of the elastic region
and the plastic region. Within the elastic region, concrete can be assumed to be an homo­
geneous, isotropic, linear elastic material from the macroscopic point of view. The constitutive
relation is defined by a stress-strain relationship with two elastic constants, the modulus of
elasticity E and Poisson's ratio 11, or alternatively, the bulk modulus K and shear modulus G.
For finite-element applications, the matrix form of constitutive relations can be found in a
standard textbook, e.g. Ref. [22]. For a state of stress beyond the initial yielding, irreversible
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deformations become significant. It is convenient to follow the classical plasticity theory[lO} to
use an iDc:remental form of stress-strain relationship. The total strain increment is taken to be
the sum of the elastic increment aDd the plastic increment

dE" =dE~J + dE~.

Adopting the flow rule with a plastic potential function F and

d ~ - d\ iJFE., - 1\ iJ '
CT"

(4)

(5)
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we may assume that the plastic potential coincides with the subsequent loading function which
bas a similar form as the initial yielding function or the failure function. In eqn (5), the
associated flow rule, 0'" is the total stress tensor and dA a positive parameter to be determined.
To include concrete behaviors under the local unloading and the cyclic loadina conditions, the
kinematics of the loading surface is assumed to follow a mixed hardening model [23, 24). The
model allows the loading surface to translate and simultaneously to have isotropic expansion.
The specific form of F is taken to be (Fig. 7)

F(ulI, 7) =A T(~:i) + BVh+ CUI +D~ + 7(Ep') =0,

where the tensor all characterizes the translation of the center of the loading surface, 7(Ep') an
isotropic hardening function, Ep' the equivalent plastic strain due to isotropic hardening. A, B, C
and D are material constants given in the failure criterion. The stress invariants are I. =0',;,
12=1/2 SqSq where 0'1/ =UIJ - aq, S, =5iJ - aiJ +1/38qakk- 511 is the deviatoTic stress tensor and
iiI the maximum principal value of the stress tensor iiI/'

Using the condition of consistency, i.e. dF = 0, and noting that

aF aF
aii'l = aU'I'

we have

(7)

Equation (7) may be used to evaluate the flow rule parameter dA. To do so, we consider the
plastic strain increment. It is convenient to write

dES = dE~ +dEft

= M dE~+(l - M) dES,

f

(8)
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and introduce a constant parameter M to define the isotropic hardemng effect. The remaining
plastic strain increment df~· is tben due to tbe kinematic hardening. The strain increment df~' is
related to the increment d1" of the isotropic hardening function. Define tbe equivalent plastic
strain increment to be

(9)

where the definition can be applied also to the components df~J and df~k which are denoted by
dE'p' and dE',k, respectively. In view of the definition of the isotropic hardening function 1"(f/).
we have

(10)

where H is the slope of the 1" - E',' curve.
To determine the tensor increment dalJ' Ziegler's kinematic hardening rule is assumed{25],

(11)

The parameter dlL is further assumed to be a function of the kinematic strain increment 10 the
form

(12)

Using tbe Bow rule, eqn (5), to replace dE'p by the corresponding stress components, d1" aDd da'l
can be solved explicitly in terms of tbe unknown parameter dA. Substituting the resulting forms
into eqn (7) and noting that the elastic strain increment is governed by a linear elastic behavior,

aF
= CMdE/d -dAC...... -

'OM ~ alrld'

(13)

(13)

wbere Cjj/d is the isotropic stiffness tensor whose components can be expressed in terms of
elastic moduli. The parameter dA can be solved explicitly in term of the stress components. If
dA is again substituted back into eqn (13), a total stress-strain incremental relationship for the
plastic region is obtained:

where

lC!]Id - C...q",clIWI )
d~ - • aF - - aF dE'/d'

1/ - CIfUll'SCW",,. +[c(1- M) aa,. lr,. - HM a1"] yOm",,,,,
(14)

Note that eqn (14) is based on the mixed hardenmg model. A weighting coefficIent M is
included to allow the freedom of selecting different proportions of isotropic and kinematic
effects in the mixed model. M can also be a negative value, so tbat isotropic softening can be
considered. The advantales of using the concept of mixed hardening have been demonstrated
by Axelsson and Samuelsson(23) in describing the loading "yeles of metals. They showed
different degrees of Bauscbinger effect can be considered. The mixed hardening gives much
better curve-fitting results than either the isotropic or kinematic hardening model. In their
consideration, M is arbitrarily set at 0.15 or 0.20.

Equation (14) also contains two material constants H and c. They can be related to the test
results of a sample subjected to simple compressive loading. For the uniaxial compressive
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stress condition, the only non-vanishing stress component is 0"33 = - u, and according to
Ziegler's hardening rule, the only corresponding non-vanishing component of a'i is a33 =- a.
Hence, from the stress-plastic strain plot, we may evaluate the tangent modulus H, i.e

The degenerated form of the loading function given in eqn (6) becomes

a-a::: r.

Using eqns (lOHI2) and eqn (16), we find

du =MH dEp +cO - M)r dEp•

Or,

H =MH +c(l - M)r.

Since M is arbitrary, this implies

- HH=H and C=-.
r

(15)

(16)

(17)

Finite-element implementation
To implement the incremental stress-strain relationship for finite-element analysis, it is con­

venient to write eqn (14) in an explicit matrix form. After carrying out the algebraic manipula­
tion in substituting the loading function into eqn (14), we have

{du} =[C""}{dE},

where

{dcr} =(duX> dO"y, dO"z' dryz, d1'.m dr..y)T

{dE} =(dE.., dE., dEz' dryz, dr.tz, dr..y)T.

For i= 1,2,3,

c." = EO - v) _ E
2 (J!.J....+-!PL)2

II (1+/1)(1-2/1) W 1-2/1 1+/1 .

For i =4, 5, 6,

c." -= _E_ _E2 (..1L...)2
II 2(1 + p) W 1+ P •

For i, j;:: 1,2,3 and i# i,

c." = E/I _ E
2
(J!.J....+...!IL)(J!.J....+~)

IJ (I + p)(I- 2v) IV 1-2v 1+ p 1-2v 1+ v .

For i = 1,2,3 and j =4, 5,6

cr =- E
2 (.J.L+...A-)...1!L

J W I - 2v 1+ p I + p'

(18)
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For i, i =4, 5, 6 and i # i,
S S HSIEH et ai.

C'P=_E
2
~

11 W(l+1I)2

.Jl.L - - - -2 1 -]t/JI = 2\/h Sx + {:M(S,s: - T y: +3"J2 ,

t/J. =!:= 7y: +2P[7%:7%y - S%7y:].
vJ2

t/J" and t/J3 can be obtained by permutations of t/JI for y and z. Similarly, t/Js and t/J6 are obtamed
by permutations of t/J4'

w=jiM (~+ 1) '(2Q 2+~ Q) + E (lJ!.L+JlL)
T V,.,I 3,.,4 1- 211 1+II

+c(l- M){ux(P, + t/JI) + uy(PI + t/J,,) + U:(PI + t/J3)

+ 7yzt/J4 + ixzt/Js + 1xyt/J6J~ (2PI2+ j (34),

1
PI=3 C+ D,

./-A 2 C( tJ- M 13 Sm8)P2 =2v J2-;+B+\/3 cos 2 il'2 sin 38 '

C sin 8
P3= hsin38'

PI, =t/J12+ t/Jl + t/Jl + 2(t/Jl + t/Jl + t/Jl),

and

8=1 S-I [ML.]
3

co
2 Ilf2 .

It should be noted that since the loading function becolnes singular at UI = U2> U3' or (J = 60°,
for this specific state of stress the limIting values of P2 and P3 should be implemented in tbe
numerical calculations where

A note of further interest is that since the failure criterion (and the loading function) is a
generalization of several other tbeories of simpler form, it is particularly convenient from the
proaram development point of view. For example, by suppressing material constants A and D
and substituting appropriate material values for B and C, the computer program can be adopted
for the Drucker-Prager's plasticity model[26J. By the choice of parameter M = 0.1, or other
values, we may select the hardening model to be kinematic, Isotropic, or of the mixed type.
Thus, the program developed based on the present model in fact embraces some simpler
modeling techniques.

FAILURE MODE CRITERION

Concrete fails or fractures in extremely complex modes. Aggregate types, mixed deSign, and
loadina conditions among many other parameters all play important roles in the cause of fallure
It would be difticult to classify and define precisely the failure modes. However, 10 a general
sense, the mode of failure may be categorized into three types, namely. the cracking, crushing
and a mixture of cracking and crushing. Documented test results for tension-tension or
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tension-compression biaxial conditions show the cause of fracture is primarily a brittle splitting
in tbe plane normal to tbe maximum tensile strain direction (e.g. [12, 13, 27]). For the triaxial
compression tests, depending on the magnitude of confinement pressure, it seems that aU the
three types of mode are possible. When the confinement pressure is much lower than the axial
compression, rough crack surfaces can be formed in the direction normal to the maximum
tensile strain, possibly due to the connection of numerous microcracks. For nearly uniform
hydrostatic condition, crushing failure is more common, possibly due to the rupture of mortar
in the concrete.

Crushing coejJicient
In view of the failure modes due to various types of loading conditions, a crushing

coefficient tl is proposed to identify the mode being either a pure cracking, a pure crushing, or a
mixture of the above. The coefficient can also be used to estimate the proportions of cracking
effect or the crushing effect in a mixed type failure. This is particularly convenient when the
post-failure behaviors of the fractured concrete are considered.

The concept of crushing coefficient is based on the consideration of a dual criterion in
defining the pure cracking zone and the pure crushing zone in the overall spectrum of failure
mode. Specifically, the pure cracking zone is assumed to satisfy the maximum tensile stress
condition

0'1 >0.

Written in terms of the stress invariants, we have

(19)

It may be shown that the upper limit of the pure cracking conditioft satisfies the uniaxial and the
biaxial compression failure test data, see FI8. 8. For the pure crushine zone, it seems reasonable
to assume that aU three principal strain components are aU compressive strains, SO that the
crack mechanism can not be developed in the light that no tensile strain could appear in any
direction. This implies that the maximum principal strain is non-positive

.!II
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2
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Fig 8 Fadure zones in octahedral shear and normal stress plane
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Using the Hooke's law, the same condition becomes

Rewrite the inequality in terms of the stress invariants, It becomes

(20)

Combining eqns (19) and (20) a crushing coefficient a is defined as

(21)

The failure modes are then identified as

(i) Pure cracking, a < I,

(..) P hi (l +11)
II ure crus ng, a> (t _ 211)'

(...) M' d od I (l +v)
111 lXC m e, Sa S {l- 2vr

(22)

IfPoisson's ratio is taken to be 11 := 0.2, we have a := 1.0 and 2.0 as the boundary values separating
the three different failure zones.

Note that in obtaiaina the simple crushing coe8icient a Hooke's law of elasticity was
employed to obtain the stress criterion. Strictly speakioa, this is inconsistent in an elastic­
plastic-fracture model; Hooke's law may oot apply immediately before crus_ However,
judaing by the complex nature of concrete failure and the simplicity in the application of the
crushing coefficient, the elasticity assumption may represent an acceptable approximation. For
more acturate descriptions, the original dual criterion, i.e. (11 > 0 and fl < 0, may also be used.

POST·FAILURE BEHAVIOR OF FRACTURED CONCRETE

To complete the constitutive model, we also need to define the post-failure behaviors for
each of the failure modes identified by the crushing coeftkient. For the pure crushing zone, the
crushed concrete can be viewed to behave like a grannular material under the confinement of
neiahboring materials. Material stiffness in compression or shear, although reduced, should still
exist. However, for simplicity, we may neglect the residual stiffness and the residual strength of
a crushed concrete element in the analysis. Thus, the post-failure behavior becomes perfectly
deformable. For a concrete element subjected to pure cracking, the post-failure behavior is
assumed to be anisotropic elastic that the element have lost its rigidity in tbe cracked planes,
see Fig. 9. An extensive discussion of the kinematics of a cracked concrete element was
reported by Chen and Suzuki{28]. Within the mixed failure zone, the value of the crushing
coefticient is between 1.0 and 2.0 for v := 0.2, for example. If the crushing coefticient is adopted
as a measure of the degree of crusbing in this partially cracking and partially crushing concrete
element, then we may view that the post-failure behavior is also a linear interpolation of the
perfectly deformable behavior and the anisotropic elastic behavior. Hence, it is proposed that
the concrete element will lose its rigidity in the cracked plane according to the maximum tensile
strain direction and the anisotropic stifness of the fractured element will also be proportionally
reduced according ttl the magnitude of a. Note that for II =0.2, mixed failure lies between
a = 1.0 and a = 2.0. Thus, the values of a behind the decimal point represents the percentages
of crushing and also the percentages of stiffness reduction.

Finite-element implementation
To formulate tbe anisotropic elastic behaviors in matrix form for finite-element applIcation,
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Fig 9 Pattern of cracks and stress dlstnbutlOn In a cracked concrete

we define the pre-failure principal axes be (x', y', z') with x' denoting the maximum tensile
strain direction. Then, the incremental stress-strain relation for the post-failure behavior has
the form

(23)

in which

{Au} ={Aux,Auy, Auz, ATy,., ATxv 4,-xyV,
{4t} ={Atx' 4f" Atz•A)'yz' A)'xz, 4yxyV,
{Uck} =[T"V{O'~, 0, 0, 0, T~z, T~,V,

{uclt} = (P - 1)[T"Y{O, 0';, u~, T;,., 0, oV.

{Ud} is the released stress components due to cracking and {uclt} is that due to crushing. [T,,]
and [T,l are the transformation matrices for stress and strain components between the principal
coordinates and the original reference frame. p is a reduction factor related to the crushing
coefticieat a. For a < ), fJ =1; a > 2, fJ =2; and 1S a S 2, fJ =a. [l':J is a stiffness matrix with
components

C22 :: C33 =(2 - fJ)E(1- 11)/(1 +IIXl- 211),

Cn :: Cn = (2 - fJ)Ev/(1 + IIX) - 211),

C44 :: (2 - fJ)Ef20 +II),

and aJl other components vanishes.
It IS expedient to list the matrix equations for some special cases:

(a) The axisymmetrical problem. Written in polar coordinates, we have

IEl = (21-J'!l (.~(~~~-'~~:~)li;:Jj~-~_xb~b:(~~~ ~)j~I(24)
140'8 v{b(l/I)V ! 1 At8 \ 0 P-1 0'8

(b) The plane strain problem.

(25)
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The abbreviated functIons are

S. S HSIEH et al

\

COS2 t/J I 1cos
2

t/J 1
{b(t/J)} = sin2 t/J and {b'(t/Jn:::: sm2 t/J J~ ,

sin t/J cos t/J 2 sin t/J cos t/J

where t/J is the direction of the cracked plane, see Fig. 9, [1] is the identity matnx.
(c) The plane stms problem. Special attention should be given to the plane stress condition.

For tension-tension and tension-compression conditions, the maximum tensile stress is in the
plane, and the concrete always fails in the cracking mode. However, for the compresslon­
compression case, normal stress (]'\ :::: 0 represents the maximum stress. This indicates that the
crusbina parameter a =1.0 for all stresses. Hence, for plane stress condition the mixed zone
and crushing zone are collapsed into a singular point. Physically, it can be interpreted that
based on the zero-thickness assumption of plane stress, the element thickness simply does not
permit cracks to generate, and pure crushing would result due to the simultaneous com­
pressions in the plane. The corresponding matrix formulations are: for tension-tension and
tension-compresslon cases,

and for compression-compression case,

APPLICATION FOR OTHER MATERIALS
The present model is proposed for concrete materials. However. the model can also be

extended to represent properties of otber engineering materials of similar nature. As mentioned
previously, by inserting appropriate material constants (see Table 1) the model can be
degenerated to simpler forms. such as the von Mises criterion which has been used for metals.
It can alSQ be reduced to' the Druck.er-Prager criterion which has been used as a simplified
version for the Mohr-Coulomb model for rocks and soils. The proposed four-parameter failure
criterion and the associated constitutive equations are thus the generalization of some models
used for a wide variety of materials. Due to the flexibility of having four material constants.
material properties can be simulated more accurately. For example, the Drucker-Prager yield

Table I Matenal constants matched WltIt other cntena

Four-Pu....eer !!odel A II C D

von Mises 0 1 0 0

(~-K)
K

Drucker-Puger 0 1 0 ..
(ll+n;-K)

K K

CoulOllb
I!U-51n.> lUll. 0

0 2 c cos. c
(t + C1t.... -C-O)
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function, depicted in the three dimensional principal stress space, can be represented by a cone
shape with the circular base located on the deviatoric stress plane, while the Coulomb criterion
is a pyramid shape with an irregular hexagonal base. Thus discrepancies are expected when the
Drucker-Prager model is used to simulate the behaviors of a typical Coulomb-type material
such as soils. Efforts have been made to minimize the discrepancies by relating the Drucker­
Prager constants a and K to the Coulomb coefficients c and tP by using various matching
approaches. However, successful matchings are limited to certain special cases. Using the
four-parameter model proposed in the study the material constants A, B, C, D can be used to
match Coulomb's material properties tP and c as shown in Table 1. With two additional
constants they seem to match very well on the deviatoric plane. The difference is less than 4%
(see Fig. 10). Plotted both criteria on the biaxial stress plane, without further adjustment in the
material constants, the maximum difference is found to be less than 15% in the compression­
compression region and 4% in the tension-compression and the tension-tension regions as
shown in Fig. 11.

SUMMARY AND CONCLUSIONS

A plastic-fracture constitutive model for concrete structural analysis bas been developed,
with the primary objective being that the material model has the capability of describing the
essential features of concrete behaviors, and is yet sufficiently simple for which the model can
easily be implemented for finite-element analysis. Based on the geometrical considerations in
the stress space, a four-parameter failure (yielding) criterion is proposed. Parameter deter­
mination for the criterion has shown to be simple. In addition, the criterion proves to be a linear
combination of three simple models, namely, von Mises, Drucker-Prager and Rankine models.
Hence, a plastic-fracture theory based on the present failure (yielding) criterion in fact
embraces some simpler theories. This is particularly tractable in the propam development and
in the selection of modeling techniques often required in the material characterization. Resting
on the similar consideration, a plastic model displaying mixed bardeniDa elect bas been
proposed. With the selection of a constant parameter, the bardemnc rule has the choice amoDI
the isotropic type, the kinematic type, and the mixed type.

To ide.rify the flliJure mode, a simpJe crus~ina coefficient based on a duaJ criterion is
proposed to subdivide the spectrum of failure into the crushing type, the crackinc and a mixture
of cracking and crushing. For each type of the failure modes, the post-failure anis.otropic elastic
behavior has been defined. The crushing coefficient is also used to estimate the amount of
crushing in the mixed mode of failure, and to determine the loss of material rjpdity after
fracture.

Drucker-Prager',
Model

Coulomb's
Model

Fig 10 Mobr-Coulomb model, Drucker-Prager model and the four-pal'llJlltter model m deviatonc stress
plane.
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Fig. 11 Comparison of Mohr-Coulomb model and the four·parameter modelm b1axllIl stress plane.

Since one of the considerations in the development is that the material model developed
sbould be convenient for numerical calculations, matrix equations for the constitutive relation­
ships at all stages of the loading and unloading process discussed in the above have been
explicitly formulated. This includes the consideration of adopting a stress-redistribution process
commonly used in finite-element analysis to handle the progressive failures.

In conclusion, we wish to emphasize the generality and versatility of the present plastic­
fracture model, the simplicity in using the crushing coefficient to handle various types of failure
mode, and the tractability in implementing the model for concrete structural analysis.

REFERENCES

L. Cedoltn, Y. R J Crumm and S. D Pob, Tnaxllll stress-stram relattonshlp for concrete J &gng Milch. DitI ASCE
103(EMJ). 243....m. Proc Paper 12969 (June 1977)

2 T C Y LIU. A H Nilson and F 0 Slate. Blllxlal stress-stram relations for concrete, J Struct. Div ASCE,98(ST5).
1025-1034 Proc Paper 8905 (May 1972)

3 R Palamswamy and S. P. Shah, Fracture and stress-stram relaltonshlp of concrete under triaxtal compression J
Struct Div. ASCE, l88(STS),901-916 Proc Paper 10547 (May 1974)

4 Z P Bahn! and P D Bhat, Endochromc theory of tnelastlclty and fadure of concrete. J Engng MilCh. 1JJv. ASCE
I02(EM4), 701-722 Proc Paper 12369 (Aug. 1976)

5 Z P Baiant and C L Shieh, EndochronlC model for nonlmear triaxial behaVIor of concrete Nllclear E/lflng DesIgn
47,305-315 (1978)

6 ACT Chen and W F Chen, Conslttutlve relallons for concrete J Engng MIlCh. Vlv. ASCE IOl(EM4), 465-481
Proc Paper 11529 (Aug 1975)

7 A C. T Chen and W. F Chen, Conslltutlve equatIOns and punch-mdentalton of concrete J EIIgng Mech. Dill A8CE,
IOl(EM6), 889-906. Proc Paper 11809 (Dec 1975)

8 II7 J Wdlam and E P Warnke, ConslltutlVe model for the tnaxlal behavior of concrete. Intematlonal ASSOClatlon of
Bndge and Structural Engmccn Seminar on<Concrete Structures Subjected to TnaXlal Stresses, Paper III·I, Bergamo,
Italy, 17-19 May, 1974

9 W. F. Chen and E C. Tmg, Conslltullve models for concrete struclures J Engng Meeh. Dill A8CE 1000EMI), 1-19.
Proc Paper 15177 (Feb 1980)

10 A Mendelson, PlastIcity 17Jeory and ApplicatIOns McMillan. New York (1968)
11. H Kupfer and H K. Htlsdorf, BehaVIOr of concrete under btaXtaI stresses ACI J 66(8), 656-666 (Aug. 1969).
12. M. E Tasull, F 0 Slate and A H Nilson, Stress-strain response and fracture of concrete in biaxialloadmg ACI J

75(7), 306-312 (July 1978)
13 L. L Mdls and R M. Zimmerman. Compressive strength of plam concrete under multlllxllllioadmg conditIOns ACl J.

69(10), 802-807 (Oct 1970)
14 P. Launay and H. Gachon, Stram and ultimate strength of concrete under Iflaxlal stress Special Publ•• 8P-34, ACI I,

269-282 (1970)
15 K H. Gentle tit ai, Strength of concrete under multtaXllIl stress states SpllcUlI Pllbi SP55·S, 103-131 ACI, Douglus

McHenry Internattonal Symposium on Concrete and Concrete Structures (1978)
16 N S Ottosen, Afadure cnterion for concrete J EIIgng Meek Div ASCE I03(EM4). 527-536 Proc Paper 13111 (Aug

1977)



Aplastic-fracture model for concrete 197

17 V. Hansson and K SchimmelpfeDIIII, Concrete strength in mullJaXJal stress states Special Pllbl SP-34, ACI, I,
29S-309 (1970).

18. S. Napmatsu and A. Sato, Study on fracture cntenon of concrete under combmed stress, (Part I-III). Traits AD, No.
2~, 247, 254, 7-15, 1-10, 11-20 (Aua., Sept 1976, April 1m)

19. I. H. AraYns, G. Faust, 1. Szimmat, E. P. Warnke and K. I WilIam, Recent developments in the fimte element analysis
of prestressed concrete reactor vessels. NlICkor E""" Design 21, 42-75 (1974)

20. D. I Hannant and C O. Frederick, FaJlure cntena for concrete m compreSSIOn, Magpe 0/ Coltcrete Res 21(64),
137-144 (Sept. 1968)

21. S S. Hsieh, E. C. TUII and W. F Chen, An elastic-fracture model for concrete 3rd ASCE/EMD Specialty Co,,/.,
Austin, Texas, 437-441 17-19 Sept. 1979.

22 O. C. Zaenkiewicz, Tht Fuute Element Method ill En""ttrillg Sclnfce, McGraw-Hili, London (1971).
23 K. Axelsson and A. Samuelsson, ruute element analysis of elastic-plastic materials displaYID8 mIxed hardeDllll. I"t. J.

NIltII. Malt. &"" 14, 211-225 (1979).
24. H. A. Balmer and I. St Doltsmis, Extensions to the elastoplastic analysis WIth the ASKA pro8f8m system Compul.

Malt. ilt Appl. Meclt. E""" 13, 363-401 (1978)
25. H. ZieeJer, A modification of Praaer's bardeDllll rule Own App/. Mathematics 17, 5S-65 (1959).
26. D. C. Drucker and W. Prager, Soil mechanics and plasticIty analysis of Itmit desllD, (Juan. App/. MathematICS 11(2),

157-165 (1952)
27. I. N Carino and F. 0 Slate, LtmibD8 tensile stram cnterlOn for failure of concrete, ACIJ 73(3), 160-165 (1976).
28 W F Cben and H Suzukt, Constitutive models for concrete, ASCE Annual ConvenllOD and Exposition, Chlcqo,

UlinolS, October 16-20, 1978, Prtprttlt 3431, 51-79

55 Vol 18. No 3-11


